A Kernel Independence Test for Random Processes
نویسندگان
چکیده
A non-parametric approach to the problem of testing the independence of two random processes is developed. The test statistic is the Hilbert-Schmidt Independence Criterion (HSIC), which was used previously in testing independence for i.i.d. pairs of variables. The asymptotic behaviour of HSIC is established when computed from samples drawn from random processes. It is shown that earlier bootstrap procedures which worked in the i.i.d. case will fail for random processes, and an alternative consistent estimate of the p-values is proposed. Tests on artificial data and real-world forex data indicate that the new test procedure discovers dependence which is missed by linear approaches, while the earlier bootstrap procedure returns an elevated number of false positives.
منابع مشابه
A Wild Bootstrap for Degenerate Kernel Tests
A wild bootstrap method for nonparametric hypothesis tests based on kernel distribution embeddings is proposed. This bootstrap method is used to construct provably consistent tests that apply to random processes, for which the naive permutation-based bootstrap fails. It applies to a large group of kernel tests based on V-statistics, which are degenerate under the null hypothesis, and nondegener...
متن کاملSelf-Discrepancy Conditional Independence Test
Tests of conditional independence (CI) of random variables play an important role in machine learning and causal inference. Of particular interest are kernel-based CI tests which allow us to test for independence among random variables with complex distribution functions. The efficacy of a CI test is measured in terms of its power and its calibratedness. We show that the Kernel CI Permutation T...
متن کاملIndependence Tests based on the Conditional Expectation
In this paper we propose a new procedure for testing independence of random variables, which is based on the conditional expectation. As it is well known, the behaviour of the conditional expectation may determine a necessary condition for stochastic independence, that is, the so called mean independence. We provide a necessary and sufficient condition for independence in terms of conditional e...
متن کاملKernel Methods for Measuring Independence
We introduce two new functionals, the constrained covariance and the kernel mutual information, to measure the degree of independence of random variables. These quantities are both based on the covariance between functions of the random variables in reproducing kernel Hilbert spaces (RKHSs). We prove that when the RKHSs are universal, both functionals are zero if and only if the random variable...
متن کاملBehaviour and Convergence of the Constrained Covariance
We discuss reproducing kernel Hilbert space (RKHS)-based measures of statistical dependence, with emphasis on constrained covariance (COCO), a novel criterion to test dependence of random variables. We show that COCO is a test for independence if and only if the associated RKHSs are universal. That said, no independence test exists that can distinguish dependent and independent random variables...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014